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A precise description of the nontrivial upper invariant measure for 2 > 2 c is still 
an open problem for the basic contact process, which is a self-dual, attractive, 
but nonreversible Markov process of an interacting particle system. By its self- 
duality, to identify the invariant measure is equivalent to determining the initial- 
state dependence of the survival probability of the process. A procedure to give 
rigorous upper bounds for the survival probability is presented based on a 
lemma given by Harris. Two new bounds are given, improving the simple 
branching-process bound. In the one-dimensional case, the present procedure 
can be viewed as a trial to make approximate measures by generalized Markov 
extensions. 
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1. i N T R O D U C T I O N  

W e  c o n s i d e r  the  bas ic  c o n t a c t  p rocess  of  H a r r i s J  ~ I t  is a c o n t i n u o u s - t i m e  

M a r k o v  p rocess  def ined  on  the  d - d i m e n s i o n a l  h y p e r c u b i c  la t t ice  Z d. A t  

each  site x e Z d, a va r i ab le  ~/(x) t akes  va lues  0 and  1. T h e  f o r m a l  g e n e r a t o r  

o f  the  p re sen t  M a r k o v  s e m i g r o u p  S(t) is g iven  as 

g2f(tl) = ~ c(x, q ) [ f ( q x ) _ / ( r / ) ]  (1.1a) 
x ~ Z  d 

with  flip ra tes  

c(x, r/) = t / (x)  + 2(1 - r /(x)) ~ q(y)  
y: ly x] = 1 

(1.1b) 
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where qx denotes qX(y) = t/(y) for y ~ x and t/X(x) = 1 - ~(x). It is easy to 
show that there is a unique Markov process ~/, on. the state space 
X =  {0, 1 }z~ corresponding to S(t). (2) Because this process can be viewed 
as a simple model for the spread of infection of disease [an individual at 
x s Z ~ is infected if q (x )=  1 and healthy if t / (x)= 0], the parameter 2 is 
often called an infection rate. In the textbook written by Liggett, (2) for 
example, Chapter VI is devoted to this process. 

In the terminology used for the interacting particle systems, (2 4) the 
contact process is an attractive spin system. It has a coalescing dual which 
is the same as the original process (self-duality). However, this process is 
not a reversible process. 

As a result of attractiveness, there exist lower and upper invariant 
measures; 

~ =  lim (~oS(t) (1.2a) 

/ i=  lim C~lS(t) (1.2b) 
t ~ o o  

where 6o and 61 are point masses on t / -  0 and r/= 1, respectively. Here the 
lower invariant measure is a trivial point mass g0 by the present rule of 
dynamics (1.1). An important point of the contact process is that there is 
a finite and positive critical value 2c(d), above which the process has a non- 
trivial upper invariant measure. In this paper this nontrivial upper 
invariant measure is denoted by vd,~ for the d-dimensional contact process 
with an infection rate 2. 

Although the existence is confirmed, neither the exact value of the 
critical point nor the form of vd,~ are known yet. Of course, it is an 
interesting problem from the mathematical point of view; it should be 
emphasized here that mathematical physicists also have been seeking the 
precise description of this nontrivial invariant measure. The reason is that 
processes which are essentially the same as the contact process have 
appeared in a wide variety of fields of theoretical physics. It is known as a 
Reggeon quantum spin model for the strong interaction of hadrons/5 7) 
The contact process may be considered as a simplified version of Schl6gl's 
first model for some autocatalytic chemical reactions. ~8'9) As mentioned 
above, it can also be viewed as a model of spread of infection. 

The purpose of the present paper is to give some approximate 
measures which bound this nontrivial upper invariant measure. By self- 
duality, the upper invariant measure vj,;. of the contact process is 
completely characterized by the initial-state dependence of the survival 
probability of the process. In Section 2, a basic lemma of Harris is shown, 
based on which we derive upper bounds for the survival probability. 
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Section 3 is devoted to a presentation of our procedure to make approximate 
measures. In Section 4, three approximate measures are obtained by our 
procedure; the simple branching-process bound and two new improved 
bounds. It is proved in Appendices A and B that these approximate 
measures sa~tisfy the conditions of the basic lemma mentioned in Section 2 
and thus they are rigorous upper bounds for the true one. Section 5 is 
devoted to a summary and concluding remarks. 

2. B A S I C  L E M M A  

Let Y be the collection of all finite subsets of Z d. The finite contact 
process is the one for which initially, and hence at all times, ~x  ~5(x) < ~ .  
With the identification At = {x: ~/,(x) = 1 }, the finite contact process can be 
viewed as a Markov chain At on Y. This process At is the coalescing dual 
of r/t. Let z = inf{t ~> 0: At = ~ } ,  and define a survival probability of the 
process At starting from A e Y as 

ad,;,(A) = pA(v = ~ )  (2.1) 

for all A E Y in the d-dimensional contact process. 

R e m a r k  2.1. Since the contact process is self-dual, this survival 
probability can be written in terms of the upper invariant measure vd, x as 
follows(Z): 

ad,~.(A) = va,~{q: q (x )=  1 for some x e A } 

= 1 -  Evd,~ [x IJA ( 1 -  ~/(x))] (2,2) 

Thus, to identify the upper invariant measure vd,;~ is equivalent to 
determining the dependence of the survival probability ad,~(A) on the 
dimensionality of the system, the infection rate, and initial states. 

In order to obtain upper bounds for ad,;~(A), here we use the following 
lemma, which is found in the paper by Harris. (1~ 

L e m m a  2.1. Let h(-) be a [0, 1]-valued function defined on Y, 
where: 

(i) h ( ~ ) = O  
(ii) O < h ( A ) < ~ l f o r a l l A # ~ 5  

(iii) lim,A, ~ ~ h(A)= 1 
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(iv) R(h(A)) <~ 0 for all A ~ Y, with 

R(h(A))=-2 ~ ~ [h(A)-h(Awy)]+ ~ [h(A\x)-h(A)] 
x s A  Y:IY x l = l ,  yg~A x ~ A  

(2.3) 

Then 

r forall  A t Y  (2.4) 

Remark 2.2. Holley and Liggett used this lemma [with the 
opposite inequality in the condition (iv)] to give their famous lower bound 
for the survival probability.~11 / 

This lemma means that if we can correctly choose a function h(.) so 
that the four conditions of this lemma are satisfied, then we obtain a 
desired upper bound. As mentioned in Liggett's textbook, ~2) it is believed 
that upper bounds for the survival probability are easier to find than lower 
bounds. For  example, it is well known that some simple branching process 
gives an upper bound.(12) However, the discrepancy between this branching- 
process bound and the true one, which has been estimated by some 
(unfortunately nonrigorous) methods in statistical physics, is rather 
large. (6'7'I3-15) So, here we try to improve this branching-process bound by 
choosing better functions h(.). 

3. OUR CHOICE OF TRIAL FUNCTION h ( ' )  

In this section we show our strategy to choose trial functions. Here we 
write A ~ B when a subset A e Y can be mapped to a subset B e Y by some 
translation, rotation, and reflection. Let Y denote the collection of all 
equivalence classes determined by this relation. In other words, Y is the 
collection of all different shapes of finite subsets in Y. We make two 
remarks before giving our choice of h(.). 

R e m a r k  3.1. For  every subset A in ~P we can determine a number 
cB(A) for each subset B ~ Y as 

ca(A) = # {C~ Y: C~A and C~B} (3.1) 

It denotes the number of subsets included in A, which is equivalent to the 
subset B. The survival probability should be written as a function of a 
series of these numbers as 

for all A ~ ~'. 

ad,~(A) = F({cB(A))~ r,) (3.2) 
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R e m a r k  3.2. The survival probability is a stationary solution of 
the time-evolution equation of the system. Thus, the following equation 
(harmonicity) should hold for every subset A ~ '7: 

R(ad,;.(A))=O (3.3) 

where R(-) is given as (2.3). 
Our procedure to choose a trial function is given by the following 

three steps. 

(i) First we choose a finite collection of sets A in ~'. 

(ii) We assume a simple form of h(.), 

h(A)(A) = 1 - l-I (O~(B A))cB(A) for all A e Y (3.4) 
B~A 

Namely, we introduce some real function c~ A) depending on the dimen- 
sionality of the system d and the infection rate 2 for each subset B 
belonging to the collection A chosen above. Then a simple product is 
made. Intuitively speaking, we employ a kind of patchwork by using the 
pieces in A. 

(iii) The real functions c~ A) are determined so that the stationary 
condition (3.3) is satisfied only for the nonempty subsets included in the 
collection A, 

R(h(A)(B))=O for all B ~ A , B r  (3.5) 

In other words, we may say that ~A)'s are chosen so that the partial 
stationary condition (3.5) should be satisfied. 

4. RESULTS 

We give some upper bounds obtained by our procedure. It is shown 
first that the branching-process bound mentioned at the end of Section 2 is 
derived following the simplest choice of our trial function h(-). Then two 
improved bounds are presented. 

4.1. Branching-Process Bound 

Let A be a simple collection of an empty set and a singleton; 

A = A ( 1 ) =  {~ ,  {x}}~  ~ (4.1) 

Then, the following bound is obtained, which is known as the branching- 
process bound. 
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Result  1. 

with 

where B1 - {x} and 

For 2 > ( 2 d ) -  ~, 

a a,~.(A ) ~ h(A(1))(A ) for all A 6 Y 

h(A(a))(A) = 1 - t~ (A(~))vB~(A) 
k 8 ]  ) 

1 ~(A(1))(d 2 ) = - -  
~ t ' 2d2 

Katori and Konno 

4.2. Pa i r -Approx imat ion  Bound 

The first improvement of the branching-process bound is given in 
arbitrary dimensions, which may be called a pair-approximation bound. 
Here we let 

A = A(2)= {~ ,  {x}, { x , x +  1}} c ~" (4.2) 

Result  2. F o r 2 > ( 2 d - 1 )  1, 

a d, a(A) <~ h(A(2))(A) for all A ~ Y 

with 

where  B 1 ~- {x ) ,  B 2 ~ {x, x + 1}, a n d  

2 d -  1 e ( A ( 2 ) ) ( d  ' .~ ) = 2d(2d-  1 ) 2 - 1 (4.3b) 
a~(z)~(d, 2 ) - 2 d ( 2 d _ l ) 2 _  1, B2 ~ , (2d_1)22  

In this choice the indices CBI(A ) and cB2(A) are the cardinality of A and the 
number of neighboring pairs of points included in A, respectively, 

(ev(A(2))]cBI(A)[ev(A(2))]CB2(A) (4.3a) 

c~(A) = IAI ,  cs2(A) = �89 ~ ~ IA(X) IA(y) 
x c A  y : l x - y l =  1 

where IA(x) is the indicator functien of A. 
In particular, for the order parameter pd,;, =-ad,;.({x}), the survival 

probability of the process starting from a single point, we give 

2d{(2d-  1 ) 2 -  1} 
Pu,;~ 2 d ( 2 d - t ) ) ,  1 

(4.4) 

Here the index cBI(A) is nothing but the cardinality of A; cel(A ) = [A[. 
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Remark 4.1. As desired, this is an improvement of the previous 
branching-process bound for 2 > ( 2 d -  1 ) -  1, 

~rd,;~(A)<~h(A(2))(A)<~h(A(l))(A) forall  A6 Y (4.5) 

Remark 4.2. This result can be considered as a generalization of 
the bound found in the monograph by Griffeath (ref. 3, p. 31, Proposi- 
tion 4.4). His bound is given only for the order parameter in the case of 
one dimension, 

22 - 2 
Pl.~ ~< 2 2 ~  for 2 > 1 (4.6) 

Result 2 is a generalization of this bound to the survival probability for all 
kinds of initial states in arbitrary dimensions. 

Remark 4.3. By self-duality of the contact process, (2) 

2c(d ) - sup{2/> 0: process is ergodic } 

= inf{2 ~> 0: Pd, x > 0} (4.7) 

It is proved (2~ that Pd.~ is a nondecreasing function of the infection rate )~. 
Thus this result implies the following lower bound for the critical value, 
which was first obtained by Harris(l): 

2e(d)>>- ( 2 d -  1) 1 (4.8) 

Proof ol ResuR 2. See Appendix A. 

4.3. Improved Bound and Markov  Extension in the 
One-Dimensional  Case 

The next result is for the one-dimensional system. In this case we make 
the finite collection A have five sets, 

A = A ( 3 ) - { ~ , { x } , { x , x + l } , { x , x + l , x + 2 } , { x , x + 2 } } c ~  (4.9) 

Here we put BI~--{x}, B2=--{x,x+l}, B 3 - { x , x + l , x + 2 } ,  and 
B~- {x,x+2}. 

Result 3. F o r s  

o'I,,:(A ) ~< h(A(3))(A) for all A ~ Y 
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with 
4 

\ Bl ] 
i = 1  

where ~(A(3~) are determined as B~ 

2(22 + 3) + ( ~ ( A ( 3 ) )  

B~ - ( 2 2 + 1 ) ( 6 2 2 - 3 2 - 1 )  

(A(3)) - -  ( 2424 § 1623 + 822 + 2 + 1 ) + (62 -- 1 )(2 + 1 ) ~/-D 
0~B2 - -  

(4.10a) 

22(2 - 1 )2 
e(ff(3)) _ ( 2423 + 16'~2 - -  22 - 3) + (42 + 3) x /D  (4.!0b) 

82(22 + 1)2 

(2+  1){(1223- 2)~2- 2 + l ) -  (3,~- 1 )x fD  } 
~ ( A ( 3 ) )  

B~ - 2 2 2 ( 2 - 1 )  

where D = 1624 + 422 + 42 + 1. In particular, 

42(322 - 2 - 3 ) 
p~,~<.(1223_222_82_1)+(1624+422+42+1)~/2 (4.10c) 

Remark 4.4. This result implies the following bound for the critical 
value: 

2c(1) ~> I( 1 + x ~ ) =  1.18046... (4.11) 

This bound (4.11) was proved in Griffeath. (16) An alternative proof can be 
found in Section 2 of Chapter VI in the textbook by Liggett. (2) See also 
ref. 17 for the generalization of this lower bound for 2c to arbitrary dimen- 
sions and an improvement in the one-dimensional system. Ziezold and 
Grillenberger (18) reported a systematic study of lower bounds on 2~.(1). 
Their best lower bound is 2c(1)~> 1.539. 

In the one-dimensional case, it should be remarked that our trial func- 
tion has an interesting feature. As easily verified, it can be given by a 
generalized Markov extension (see, e.g., ref. 19); a function originally 
defined only on a small collection A is extended to a function defined on 
the whole of Y. This fact is illustrated below by showing that the function 
h ( A ( 3 ) ) (  �9 ) given by (4.10a) and (4.10b) is derived by the three-point Markov 
extension. 

In order to define the three-point Markov extension, we first introduce 
some sets in Y: 

W}2)={i,i+l}~Y, Wl3)={i,i+l,i+2}~Y for i e Z  1 (4.12) 
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For A e Y, let 

W(2) (3) (3) AI 2 ) = A ( 5  " i , A i = A c ~  W, 

Then, we observe 

(2) forall A (2)~ , 31.412)eA(3 ) s.t. AIZ)~Ag 

and 

(4.13) 

(4.14a) 

fo r  a l l  ,d(3) 31A13) ~ A(3 ) s.t. ~(3) (3) A, ~ A  i (4.14b) 

Now we assume that/~(3)(. ) is defined as a nonzero-valued function on 
A(3) with normalization h(3)(/i~')= 1. Then the Markov extension is defined 
as the following procedure which extends it to a function on Y. For 
A e Y\A(3), define 

Then, put 

IA=min{x:xEA}, rA=max{x:x~A} (4.15) 

rA 2 h(3) (~  !3)) 
H i l l  A z 

h(3)(A) - Hr~_ 2 h(3)(212)) (4.16) 
I=IA+I  

and define 
h(3)(A) - 1 -/~(3)(A) (4.17) 

It is easily verified that if we define/i(3)( . ) on the finite collection A(3) 
so that the following relations with the functions {a(A(3))} defined by 
(4.10b) should hold, 

~(A(3))B1 ---- ]~(3)(B1), a(8 A(3)) -- /z(3)(B2) 

(~(3)(B1))2 
(4.18) 

~(A(3)) = h(3)(B3) ]~(3)(B1) r ~."(A(3)) _ , 4  h(3)(B4) 
(]~(3)(B2))2 (]~(3)(B 1 ))2 

then the function h(3)(.) extended to Y by (4.16) and (4.17) is equivalent 
to the function h(A(3))(.) defined by (4.10a). 

A sketch of the proof of Result 3 is given in Appendix B, where 
properties derived from the form (4.16) of the Markov extension are fully 
used. Complete proof for the lemmas in Appendix B is reported in ref. 20. 

5. S U M M A R Y  A N D  C O N C L U D I N G  R E M A R K S  

As summary, we give in Fig. 1 a numerical comparison of the various 
bounds for the order parameter in the one-dimensional contact process. 
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Fig. 1. Three upper bounds for Pl.;~ are shown for the one-dimensional contact process: 
[1] h(A~l)~({x})= (22-- 1)/22()0> 1/2); [23 h(A(z~({x}) = (22--2)/(2;t-- 1)(2> 1); and [3] 
h(AC3)~({x}), which is given as the right-hand side of (4.10c) for 2>-~(1 +,fl3-7). The line 
denoted by p~L is the Holley-Liggett lower bound for pl.a, Im p~L= 1/2+ 
[(2 - 2)/42] l/2 (2 ~> 2). 

We have some numerical data  which suggest the convergence of the 
bounds  obtained by the present procedure to the exact one as the limit 
A--* Y with some assumptions on the convergence rate as reported in 
ref. 15. At this stage, however, we can give no rigorous arguments  on this 
convergence problem for the d-dimensional contact  process. 

Finally, it is remarked that an alternative method to improve upper 
bounds  for Pd.;. can be constructed by using the Harris F K G  inequalities, 
which is reported in a separate paper. (21) 

A P P E N D I X  A. P R O O F  OF R E S U L T 2  

In this Appendix we prove the fact that  h(A(2) ) (  - ) given by (4.3) in 
Result 2 satisfies the four conditions (i)-(iv) of Lemma 2.1 presented in 
Section 2, when )~ > ( 2 d -  1 ) - 1. 

Hereafter, we omit the superscript A(2) in ~(A(2)) for simplicity. The Bt 
following lemmas are verified by direct computa t ion  using the expressions 

(4.3b) for as1 and aB2- 

k e m m a  A.1.  The function ~B, is a monotonical ly  decreasing func- 
txon of 2. When 2 = ( 2 d -  1)-1, eB~ takes the value 1. It goes to zero as 
,~--, oe. 
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L e m m a  A , 2 .  The function c% is a monotonically increasing func- 
tion of 2. When 2 =  ( 2 d - 1 )  -1, a ~ =  1. And l i m ; . ~  c~B~=2d/(2d-1). 
Thus, if 2 > ( 2 d -  1 ) - l 1 < c~B2 ~< 2d/(2d- 1 ). 

k L e m m a  A.3. W h e n 2 > ( 2 d - 1 )  1,0<c~s~c~82<1 for l<~k<~2d. 

The condition (i) and the right inequality in (ii) of Lemma 2.1 follow 
the definition of h(A(2)~(.) and Lemmas A.1 and A.2. For any nonempty 
As  Y, ce2(A)<~d. [AI, where IAI = ce~(A). Thus, by Lemma A.2, 

h(A(2))(A)>/1--(O~BIO~z)IAI>o for all A ~ Y  (A.1) 

where the positivity of h(A(Z))(A) is assured by LemmaA.3. Since 
h(A(Z))(A)<~I and LemmaA.3 holds, (A.1) gives the condition (iii) of 
Lemma 2.1. 

To prove the fourth condition is the hardest part. Fix A s  Y, 
and write A 2J =Uk=o Ak, where Ak= {xEA: ~ . y : l y  x ] = l  IA(y)=k}" Then 
Rd,;~(h(A(2))(A)) = ~ o R~, with 

R , = - 2  ~ ~ [h(A(2))(A)--h(A(2))(A~y)] 
x ~ A k  y : l y  x [ = l , y ~ A  

+ ~ [h(A(e))(A\x)-h(~(z))(A)] (A.2) 
x ~ A k  

For O<~k<~2d-1, (A.2) is written as 

x ~ A  k y : l y - - x ]  = 1 , y ~ A  

(A.3) 
where 

7(A, y ) =  ~ IA(Z) (A.4) 
z: ]z Yl 1 

Since 1 ~<7(A, y) ~<2d, [1 - -  0 ~ B I 0 ~ A ' Y )  1 ~ [1 - c~B~s2 ] for 2 >  ( 2 d -  1) ~ by 
Lemma A.2. Then 

R~ -< CCe~(A)C('B2(A) [Akl Mk (A.5) "~ BI B2 

with 

mk = ( 2 d -  k) 211 - c~B~ ~821 - [c~,I~L k -  1] (A.6) 

for O<~k<~2d- 1 and for 2 >  ( 2 d -  1) -1 . It is easy to show by using (4.3b) 
that 

M o = M 1 = 0 

Mk = ( 2 d -  1) 2 -  1 k -1  (A.7) 
2 d - 1  ~ ( 1 - ~  p) for 2~<k~<2d-1 

p = l  
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Lemma A.2 implies that Mk ~< 0 for 0 ~< k ~< 2 d -  1 if 2 ~> ( 2 d -  1) t. On the 
other hand, 

R 2  d = _,vcBI(A) 10~cB2(A ) 2d 2d 

Lemma A.3 ensures that R2d <~ 0 for 2 > ( 2 d -  l) 1 

APPENDIX  B. PROOF OF R E S U L T 3  

In the present Appendix, we give a sketch of proof for the Result 3 
given in Section 4. The complete proof is found in ref. 20. 

Now we show how to verify the fact that the four conditions in 
Lemma2.1 are satisfied by the function h(A(3))(-) given by (4.10a) for 
2 > 2  (3)- 1 ( 1 + x / ~ ) .  To describe our proof, it is convenient to use the 
expressions (4.16) and (4.17) obtained by the three-point Markov exten- 
sion with (4.18) rather than to use the expression (4.10a). The three condi- 
tions (i)-(iii) of Lemma 2.1 are guaranteed by the following lemma, which 
can be verified by direct calculation. 

L e m m a  B.1. For )~ > 2 (3/, 

(i) 0<]~(3)(B1)< 1 
(ii) /~3)(B2)> (h(3/(B~)) 2 

(h (3 ) (B2) )  2 
(iii) /~(3)(B3) > 

/ i (3)(B1) 

(iv) h(3)(B4) > (]~(3)(B1))2 
]7(3)(B3) ]l(3)(B2) 

(v )  - -  > - -  
]~(3)(B4) h(3)(B1) 

h(3)(U3) h(3)(B4) 
(vi) 0 <  < 1 

/~(3)(B2)(]~(3)(B 1 ))2 

In order to prove the last condition (iv) of Lemma 2.1, we reduce a 
subset A~ Y to obtain some subsets A RI and AR:~ Y and compare the 
value of R(h(3)(A)) with that of R(h(3)(AR2)). Now we define the three 
kinds of reduction. Here, z, means a translation of a set in Y on Z 1 to the 
right by n lattice spacings and ~ , means a translation to the left by n. 

Reduction I .  If there is a point x e Z  1 such that {x, x +  1, x + 2 ,  
x + 3 } c A, replace A by the following reduced set: 

{A~(-oo,  x - 1 ] } u { x , x + l , x + 2 } w r  1{A ~ I-x+4, m)} 
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R e d u c t i o n  II. If there is a point x ~ Z  I such that xq~A,x+2kCA, 
and x + (2k - 1) ~ A for k = 1, 2, 3, replace A by the following reduced set: 

{Ac~(--oo, x - -1]}~{x+l ,x+3}uT 2{A ca I x +  7, or)} 

We define AR~ as the set obtained from A by operating with the above 
two reductions as many times as possible, and write ARI= (J iA~,  - where 
A,R~= [l~ ~, r~ 1] are the ordered maximal connected components of A R~. By 
the definition of A RI, lAnai = r~ 1 - l ~  1 + 1 ~< 3 for all i. Then we define the 
third reduction. 

R e d u c t i o n  III. If there are A~ ~ and Ai~ 1 in A RI such that 
r~  + 1 = li+lR~ _ 1 and that I A ~l + [A ~ ~l/> 3, replace A R~ by the following 
reduced set: 

{AR~ca(--~ AR~c~ [ / ~ 1 ,  oo)} 

We define A R2 as the set obtained from A R' by operating with 
Reduction III as many times as possible. 

We notice that R(h(3~(A)) can be rewritten to the following form for 
the one-dimensional system: 

R(h(3)(A)) = 2 R~(A) (B.1) 
xEZ 1 

with 

R~(A) = c(A, x) F1 - h(3)(AX)]/~(31(A) (B.2) 
k li(3~(A) A 

where 
c(A, x) = 2(1 --IA(x))(IA(x-- 1) + I A ( x +  I))+IA(x) (B.3) 

and 
A ~ = ~ A w x '  if xCA (B.4) 

[A\x, if xsA 

To compare the value of R(h(3)(A)) with that of R(h(3)(AR2)), the following 
significant property of the three-point Markov extension should be noticed. 

I . emma  13.2. When AE Y, for all x e Z  ~, 

/~(3)(A~ ca {x - 2, x - 1, x}) h(3)(AX ca {x - 1, x, x + 1 }) 
h(3)(A x) xft(3l(AXca{x,x+l,x+2}) 
h(3)(A) ft(3l(Aca{x-2, x-l ,x})fr  

X ]~(3)(A ca {X, x-k- 1, x + 2 } )  

ki(3)(A c~ { x -  1, x}) h(3/(A ca {x, x +  1}) 
• 

]~(3)(AX ~ {x 2_ l, x } )  ]~(3)(AX ca {x, x + 1 }) 

By using this property and Lemma B.1, we obtain the following. 

822/63/1-2-9 



128 Kator iand Konno 

L e m m a  B.3. For A ~ Y, when 2 > ~(3) 

R(h(3)(A)) <~ fA " R(h(3)(AaZ)) 

with 

(~(3)(B3)~nI(A) (~l(3)(B4)~n2(A) ( ]~(3)(B4) ~n3(A) 

fa = \h(3)(B2)} \]~(3)(BI)/] \(]~(3)(BI))2J 

where nl(A), n2(A), and n3(A ) denote the numbers of procedures of 
Reductions I, II, and III in the map A ~ AR~, respectively. 

Since fA ~> 0 for 2 > 2 (3), this lemma means that it is sufficient to show 
R(h~3)(AR2)) <~ 0 to prove the condition (iv) of Lemma 2.1. 

Next we decompose A R~ at the places where we find points which are 
not included in A R2 more than twice in succession and write 

AR2= ~ ,~ff2 (B.5) 
J 

Let ~=min{x:x~A~ ~} and f j=max{x:x~A~} .  The above decomposi- 
tion (B.5) means that [ + ~ - P . -  1 ~>2, and that if x~  [-/j, b] ,  but x~fit~ ~, . J ~J 
then x - 1 E A~ 2 and x + 1 ~ A~ 2. Following (B.5), we write 

R(h~3)(AR2)) = ~ R(J)(h(3)(AR2)) (B.6a) 
J 

with 

R~J)(h(3)(AR2)) = ~ Rx(A R2) (B.6b) 
// l ~ x ~ < ( j + l  

where Rx(.) is given by (B.2). 
It should be noticed that each segment A~ 2 can be mapped to a non- 

empty set in A(3) by appropriate translation and reflection; 31B~A(3), 
s.t. B ~  ~ ,  B ~  A~ 2. By using Lemma B.2 successively, and noticing the 
inequality (iv) in Lemma B.1, we obtain for each j with A ~ B ~ A ( 3 ) ,  
B =~ ~ ,  that 

_R(J)(h(3)(AR2)) <~ h(3)(AR2) R(h(3)(B)) (B.7) 
h(3)(B) 

for 2 > 2 ~3). Let n(A a2, B) = # {j: Aft 2 ~ B} for B ~ A(3), B ~ ~3, then (B.6) 
and (B.7) give 

R(h~(A ~)) ~< y~ n(A R~, ~) h~(A~) R(h~(B)) (B.8) 
B~ A(3),Bv~ ~2~ /~3)(B) 
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for 2 > 2  (3). Since R(h~3)(B))=O for B~A(3) by 
condition (3.5), the proof is completed. 

the partial 
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